
Sitecore CMS 6.6
Segment Builder Developer's Guide Rev: February 6, 2013

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore CMS 6.6

Segment Builder Developer's
Guide
A developer's guide to using the Segment Builder API.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 18

Introduction

The Segment Builder component is used to get a list of visitors that matches certain criteria from the
Analytics database. This component is used by the Engagement Automation to add a segment to a
state of an automation plan. For more information, see the Engagement Automation Cookbook —
section Adding a Segment to a State.

This guide is a combined API reference and a developer's guide. It describes how the Segment
Builder works with Sitecore Engagement Automation functionality.

Developers can use the Segment Builder component to:

 Use the dialog to get visitors from selected segments.

 Create new Segment Builder rules.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 18

Using the Segment Builder Dialog

This chapter describes how to:

 Programmatically open the dialog.

 Get the visitors from a segment that is described by a collection of rules (result of the dialog).
This is the first part of the document.

Accessing the Segment Builder

To open the Segment Builder dialog and allow end users to get a list of visitors from the Analytics
database that matches a certain criteria, you must:

1. Use the following code to open the dialog:

var url = new UrlString(Sitecore.Context.Site.XmlControlPage);

url["xmlcontrol"] = "Sitecore.Shell.Applications.Analytics.SegmentBuilder";

var handle = new UrlHandle();

handle["Value"] = <rules value>; //when updating an existing rule, pass the XML

created previously, otherwise - use string.Empty.

handle.Add(url);

SheerResponse.ShowModalDialog(url.ToString(), "800px", "600px", string.Empty, true);

args.WaitForPostBack();

2. On the dialog, select various criteria and click OK.

3. You can then implement the post back action and get the dialog result. The result is a string
that describes the rules. You can use the Segment Builder to convert these rules to a set of
criteria and later on to an SQL statement. The following code snippet describes this action:

if (args.IsPostBack)

{

 if (args.HasResult)

 {

 var value = args.Result == "-" ? string.Empty : args.Result;

 //processing the value code here. Use SegmentBuilder class to get number of

 visitors of list of Visitor IDs:

 //var segmentBuilderHelper = new

 Sitecore.Shell.Applications.Analytics.SegmentBuilder.SegmentBuilder();

 //int count = segmentBuilderHelper.GetVisitorCount(value);

 }

 return;

}

4. Based on this result, you can then implement the code to get the number of visitors or visitor
IDs that match the specified user rules.

The following example describes SegmentBuilderRules class. This class describes how to open

Segment Builder dialog and save its result. The result is saved in the regular Rules format.

namespace Sitecore.Shell.Applications.ContentEditor

{

 using Sitecore.Diagnostics;

 using Sitecore.Text;

 using Sitecore.Web;

 using Sitecore.Web.UI.Sheer;

 /// <summary>

 /// The segment builder rules.

http://sdn.sitecore.net/Snippets/Sheer%20UI%20XML/Pass%20back%20the%20value%20from%20the%20modal%20dialog.aspx

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 18

 /// </summary>

 public class SegmentBuilderRules : Rules

 {

 /// <summary>

 /// Edits the text.

 /// </summary>

 /// <param name="args">The arguments.</param>

 protected override void Edit(Sitecore.Web.UI.Sheer.ClientPipelineArgs args)

 {

 Assert.ArgumentNotNull(args, "args");

 if (this.Disabled)

 {

 return;

 }

 if (args.IsPostBack)

 {

 if (args.HasResult)

 {

 this.Value = args.Result == "-" ? string.Empty : args.Result;

 SheerResponse.SetAttribute(this.ID, "value", this.Value);

 SheerResponse.SetModified(true);

 this.Refresh();

 }

 return;

 }

 var value = this.Value;

 if (value == EditorConstants.NoValue)

 {

 value = string.Empty;

 }

 Assert.IsNotNull(Sitecore.Context.Site, "site");

 var url = new UrlString(Sitecore.Context.Site.XmlControlPage);

 url["xmlcontrol"] =

 "Sitecore.Shell.Applications.Analytics.SegmentBuilder";

 var handle = new UrlHandle();

 handle["Value"] = this.Value;

 handle.Add(url);

 SheerResponse.ShowModalDialog(url.ToString(), "800px", "600px",

 string.Empty, true);

 args.WaitForPostBack();

 }

 }

}

Getting the Visitor from a Rule Collection

This section describes the important classes, functionalities, parent classes, implementation,
methods, and properties in the Segment Builder. Each section presents an important module in the
API. Each section contains a description of the class and some tables that describe the properties
and methods of this class.

You can also use the following classes to get the visitor's information.

Sitecore.Shell.Applications.Analytics.SegmentBuilder.SegmentBuilder

The SegmentBuilder class contains the methods that you can use to get the VisitorIds that

match to selected rules.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 18

This is a class-helper that gets a list of visitor IDs from the result that you get from the Segment
Builder dialog. This result is a string value with serialized list of segments defined in the dialog. Each
segment is a combination of segment builder rules.

The following table describes the public methods in the SegmentBuilder class and their overloads:

Method Description

int GetVisitorCount(

 string rules,

 Database

 database)

Gets the number of the site visitors.
The rules parameter is a string that represents segment

builder rules. The database parameter contains the definitions

of the rules items.
For example:

<visitorFilters>

 <rule uid=\"{F3C60029-4911-4EDA-B8E4-732B81E

 E17C9}\">

 <conditions>

 <condition id=\"{CB7EAA5E-3D4D-41DF-8453-

 34DB6FCE2F9E}\"

 uid=\"2EE7B61586224E01AC71CAB9C5E819DF\"

 automationids=\"{D036CAB9-B2F5-4176-A67F-

 82081463B78E}|{1A9E3116-8D42-46C5-BAD1-

 FD4D9B342826}\" />

 </conditions>

 </rule>

</visitorFilters>

To process the rule, the method gets the item from the specified
database and executes the rule.
In the content tree, you can navigate to the Segment Builder rule
items using the following path:
Master/sitecore/system/Settings/Rules/Segment

Builder

For more information about the rule engine, see the Rule Engine
Cookbook.

int GetVisitorCount(

 string rules)

This is an overload of the previous method. It gets the number of
visitors.
It assigns the database value to Client.ContentDatabase

that is equal to the context database.

Enumerable<Guid>

GetVisitorIDs(

 string rules,

 Database

 database)

This method is the similar to previous two methods. The only
difference is that it returns list of visitor IDs that match specified
rules.

IEnumerable<Guid>

GetVisitorIDs(

 string rules)

This is an overload of the previous method. It takes the rules
and gets the IDs of the visitors.
It assigns the database value to Client.ContentDatabase

that is equal to the context database.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 18

Note
To get other visitor related information, you should use the following class in the Engagement
Analytics API: Sitecore.Analytics.Data.DataAccess.VisitorFactory.GetVisitor.

Sitecore.Analytics.Data.DataAccess.DataAdapters.DataAdapterManager

The DataAdapterManager class defines the data adapter manager that redirects method calls to

the DataAdapterProvider class.

The following table describes the properties of the DataAdapterManager

class that belongs to the Segment Builder: For information about the other
properties, see the Engagement Analytics API Reference Guide.

Property Description

VisitorQuery VisitorQuery This class has two
functionalities:

 It is the base class for the
GetVisitorIDsSql and
GetVisitorCountSql

methods that you can use
to convert the visitor Query
to a statement that can be
executed in the DBMS to
get the number of visitors
and their IDs.

 Gets the visitor query. In
the Analytics database, it
accesses rule items in the
that reference the rule
classes. These classes are
used to construct the
query.

Note
You can use inherited classes like
the SqlVisitorQuery class to

convert data that is stored in this
object into the appropriate SQL or
Oracle statements.

VisitorBase Visitors Gets the visitors. You can also use
this property to get the number of
the visitors or the visitors IDs from
the constructed VisitorQuery

object.

The methods of this class are not part of the segment builder. They are part of the Engagement
Analytics API.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 18

Creating a Segment Builder Rule

This chapter describes how to create a new rule class. It presents all relevant classes in the
Sitecore.Analytics.Data.DataAccess.DataAdapters namespace.

Segment Builder Rule API

The following sections present the classes that exist in the DataAdapters namespace. This

namespace is part of the Engagement Analytics API. However, you should use it to create the
Segment Builder rules.

Sitecore.Analytics.Data.DataAccess.DataAdapters.VisitorQuery

VisitorQuery is an abstract class that contains the main methods that manipulate the visitor's

query. It contains the methods that are invoked by the rule implementations to construct the condition
query. This query that is executed on the Analytics database.

You can use it to:

 Aggregate the criteria to select the visitors and group them in a segment. This is done using
the methods: AddClause, AggregateQuery, and JoinTables.

 Generate SQL statements that are based on the aggregated criteria. You can execute these
statements in the Analytics database. For example, you can:

o Use GetVisitorCountSql to get the SQL statement that is executed in the DBMS to

get the number of visitors

o Use GetVisitorIDsSql to get the SQL statement that is executed in the DBMS to get

a list of the visitor IDs.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 18

The following table describes the methods of the VisitorQuery class:

Method Description

void AddClause(

 ClauseBase left,

 ClauseBase right,

 ClauseOption option,

 string group)

Takes the left and right operands of the clause, the logical
operator, the group name, and adds the clause to the query.
The group parameter is a unique name for the query that is

generated by every rule. All the queries that have the same group
name are combined using parenthesis.

Example:
AddClause(“a=b”, “c=d”, “and” , “group1”);

AddClause(“e=f”, “g=h”, “and” , “group2”);

In this example, you have different groups. Therefore, the SQL
query is:
Select…

from…

where (a=b and c=d) or (e=f and g=h)

Example:
AddClause(“a=b”, “c=d”, “and” , “group1”);

AddClause(“e=f”, “g=h”, “and” , “group1”);

In this example, you have the same groups. Therefore, the SQL
query is:
Select…

from…

where (a=b and c=d or e=f and g=h)

void AddClause(

 ClauseBase clause,

 string group)

Takes the clause, the group name, and adds the clause.

void AggregateQuery(

 VisitorQuery query,

 ClauseOption option)

Takes the visitor query clauses, logical operator and generates a
clause that contains all the registered clauses associated with the
operation.

string

GetVisitorCountSql(

 out object[]

 parameters)

Takes the parameter parameters and returns the SQL

statement that counts the visitors.
Parameters is an array of parameters that are passed with the

SQL statement to the database to get the result.

string GetVisitorIDsSql(

 out object[]

 parameters)

Takes the parameters and returns a string that contains an SQL
statement.
This SQL statement returns a list of Visitor IDs. These Visitor IDs
match the criteria that is aggregated according to the specified
rules.

void GroupData(

 AnalyticsTable table,

 string column)

Takes the analytics table, column name, and groups data by this
column name.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 18

Method Description

void InverseClauses() Takes all clauses that are added to the VisitorQuery object,

aggregates them and then negates them.
Inversing means negating or adding the logical operator Not.

Example:
Suppose you have the letters: A, B, C, D and the clause letter

> B that returns C and D.

The inverted clause is then: Not(letter > B) or letter <=

B and consequently returns A and B.

Example:
Suppose you have the same letters: A, B, C, D, and the clause:

letter = A OR letter > C. The inverted clause is then:

Not(letter = A OR letter > C) and consequently returns

B and C.

This is used when you have the except where rule. For

example, except where visitor from UK

The previous rule means NOT (user from UK).

void JoinTables(

 AnalyticsTable

 tableLeft,

 string columnLeft,

 AnalyticsTable

 tableRight,

 string columnRight)

Takes the analytics left table, left column, analytics right table,
right column, and joins the tables.

QueryConditionOperator

TransformOperator(

 ConditionOperator

 @operator)

Takes the rule related logical operator and transforms it into an
operator that VisitorQuery supports.

For example, the rules engine supports two types of logical
operators:
greater and equal

QueryConditionOperator

TransformOperator(

StringConditionOperator

 @operator)

Takes the rule engine related string operator and transforms it into
an operator that VisitorQuery supports.

For example, the rules engine supports two types of string
operators:
contains and startwith.

The developers use this method if they are writing their own
conditions and need to convert the operators that are selected in
the rules into query operations.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 18

Sitecore.Analytics.Data.DataAccess.DataAdapters.Sql.SqlVisitorQuery

You can use the SqlVisitorQuery class to generate queries as SQL statement.

Since the base class VisitorQuery is abstract, you always will work with SqlVisitorQuery or

OracleVisitorQuery.

The OracleVisitorQuery class has the same functionality as SqlVisitorQuery but for Oracle

databases.

The properties of the SqlVisitorQuery class are private and read-only.

The methods of this class are described in the VisitorQuery class

description section.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 18

Sitecore.Analytics.Data.DataAccess.DataAdapters.ClauseBase

This is the base class for all the classes that handle the rule clause. It defines the common methods
and properties of the clause.

The following table describes the methods of the ClauseBase class:

Method Description

bool Equals(

 object obj)

Is the regular C# Equal method and it determines

whether or not the specified clause object is equal to
that of the current clause.

bool EqualsTo(

 ClauseBase

clause)

Determines whether or not the specified clause is
equal to the current clause. It is a special version of
the previous method that only compares
ClauseBase objects.

AnalyticsTable[]

GetClauseTables()

Returns the array of tables that are used in the
clause.

int GetHashCode() Returns the hash code for the current clause. This
hash code is suitable for hashing algorithms and data
structures in a hash table.

Sitecore.Analytics.Data.DataAccess.DataAdapters.ColumnClause

You can use the ColumnClause clause in a query that compares two columns of two tables.

For example:

Viritors.VisitorId = AutomationStates.VisitorId

This class works with two operands left and right that represent the table columns and the conditional
operator.

The following table describes the properties of the ColumnClause class:

Property Description

string ColumnNameLeft Represents the column name in the left
operand of the clause.
In the previous example,
ColumnNameLeft is assigned to
VisitorId

string ColumnNameRight Represents the column name in the right
operand of the clause.

QueryConditionOperator

 Operator

Represents the logical operator.

AnalyticsTable TableLeft Represents the table name in the left
operand.
In the previous example,
TableLeft is assigned to Visitors

AnalyticsTable TableRight Represents the table name in the right
operand.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 18

The following table describes the methods of the ColumnClause class:

Method Description

ColumnClause(

 AnalyticsTable tableLeft,

 string columnNameLeft,

 AnalyticsTable tableRight,

 string columnNameRight,

 QueryConditionOperator

 @operator)

Initializes a new instance of the ColumnClause

class.

bool EqualsTo(

 ClauseBase obj)

Determines whether or not the clauses are the
same.

Note
You should not use this method. It is reserved for
the internal logic.

AnalyticsTable[] GetClauseTables() Returns an array of the tables that are used in the
clause.

Sitecore.Analytics.Data.DataAccess.DataAdapters.ComplexClause

A complex clause is a clause that contains two or more logical expressions that are associated with a
logical operator, such as and and or.

For example:

select VisitorId from Visitors as v where v.ExternalUser= 'someuser' and v.Value > 5

This query consists of two clauses associated by the and operator. To construct the complex clause

in this query, you should use the following code snippet:

var clauseLeft = new ValueClause(AnalyticsTable.Visitors, “ExternalUser”, “someuser”,

QueryConditionOperator.Equal);

var clauseRight = new ValueClause(AnalyticsTable.Visitors, “Value”, 5,

QueryConditionOperator.GreaterThan);

var clause = new ComplexClause(clauseLeft, ClauseOption.And, clauseRight);

query.AddClause(clause, “somegroupname”);

This is an example and you can also use the AddClause method in the VisitorQuery class that

accepts two clauses and an operator.

The following table describes the properties of the ComplexClause class:

Property Description

ClauseBase Left Represents the left clause of the statement.

ClauseOption Option Represents the logical operator that is used to
aggregate the clause.

ClauseBase Right Represents the right clause of the statement.

The following table describes the methods of the ComplexClause class:

Method Description

ComplexClause(

 ClauseBase left,

 ClauseBase right,

 ClauseOption option)

Takes the left and right clauses, logical operator and initializes the
complex clause.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 18

Method Description

bool EqualsTo(

 ClauseBase obj)

Determines if the specified clause is equal to the current complex
clause.

Note
You should not use this method. It is reserved for the internal
logic.

AnalyticsTable[]

 GetClauseTables()

Returns an array of the tables that are used in the complex
clause.

Sitecore.Analytics.Data.DataAccess.DataAdapters.HavingClause

You can use this clause in your query to describe the Having clause. For more information, see the

article Having (Transact-SQL) in the Microsoft Developer Network.

The Having clause has the following format:

HAVING <AggregateFunction>(<ColumnName>) <QueryConditionOperator> <Value>

For example:

HAVING Count(LineTotal) > 100

The following table describes the properties of the HavingClause class:

Property Description

string ColumnName Represents the name of the column that
is used in the Having clause.

AggregateFunction Function Represents the function that is used in
the Having clause.

Note

AggregateFunction currently

supports Count and DistinctCount.

QueryConditionOperator

Operator

The operator that is used in the Having

clause.

AnalyticsTable Table The table that is used in the Having

clause.

object Value The value to compare the function value
with.

The following table describes the methods of the HavingClause class:

Method Description

bool EqualsTo(

 ClauseBase obj)

Determines if the clause object is equal to the current
Having clause.

Note
You should not use this method. It is reserved for the
internal logic.

AnalyticsTable[]

GetClauseTables()

Returns an array of the tables that are used in the
Having clause.

http://msdn.microsoft.com/en-us/library/ms180199.aspx

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 18

Method Description

HavingClause(

 AnalyticsTable table,

 string columnName,

 AggregateFunction function,

 object value,

 QueryConditionOperator

@operator)

Initializes a new instance of the HavingClause class.

Sitecore.Analytics.Data.DataAccess.DataAdapters.ValueClause

You should use this clause in the query that compares a table column with a value.

For example:

Visitors.VisitorNumber = 5

The following table describes the properties of the ValueClause class:

Property Description

string ColumnName The column name to compare the
value with.

QueryConditionOperator

Operator

The comparison operator.

AnalyticsTable Table The table that the column belongs
to.

object Value The value to compare the column
with.

The following table describes the methods of the ValueClause class:

Method Description

bool EqualsTo(

 ClauseBase obj)

Determines whether or not the clause object is
equal to the current value clause.

Note
You should not use this method. It is reserved for
the internal logic.

AnalyticsTable[] GetClauseTables() Gets an array of the tables that are used in the
value clause.

public ValueClause(

 AnalyticsTable table,

 string columnName,

 object value,

 QueryConditionOperator

 @operator)

Initializes a new instance of the ValueClause

class.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 18

Sitecore.Analytics.Data.DataAccess.DataAdapters.InverseClause

You can use the InverseClause class to negate the specified clause, you should use the.

The following table describes the only property of the InverseClause class:

Property Description

ClauseBase Clause The clause object to be negated.

The following table describes the methods of the InverseClause class:

Method Description

bool EqualsTo(

 ClauseBase obj)

Determines whether or not the clause object is
equal to the current inverse clause.

Note
You should not use this method. It is reserved
for the internal logic.

AnalyticsTable[]

 GetClauseTables()

Gets an array of the tables that are used in the
clause.

InverseClause(

 ClauseBase clause)

Initializes a new instance of the
InverseClause class.

Sitecore.Analytics.Data.DataAccess.DataAdapters.InClause

You can use this clause in your query to describe the IN clause. For more information, see the article

In (Transact-SQL) in the Microsoft Developer Network.

The following table describes the properties of the InClause class:

Property Description

string ColumnName The name of the column to use as a left operand
of IN clause.

object[] Parameters The parameters of subquery.

string Subquery The subquery that is used as a right operand of

IN clause.

AnalyticsTable Table The table that the ColumName column belongs to.

The following table describes the methods of the InClause class:

Method Description

bool EqualsTo(

 ClauseBase obj)

Determines whether or not the clause object is equal to the
current IN clause.

Note
You should not use this method. It is reserved for the internal
logic.

AnalyticsTable[]

GetClauseTables()

Gets an array of the tables that are used in the clause.

http://msdn.microsoft.com/en-us/library/ms177682.aspx

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 18

Method Description

InClause(

 AnalyticsTable table,

 string columnName,

 string subquery,

 object[] parameters)

Initializes a new instance of the InClause class.

Creating a Segment Builder Rule as a Class

This section describes how to use the API of the Segment Builder to create a rule. This rule selects all
the visitors who belong to a specific country.

The input parameters are:

 The name of the country.

 The string comparison operators — you can create a rule to specify an operator from a list.

Note
The Segment Builder supports all of the existing types of the rules operators.
These operators are defined in the Master database. To navigate to these rules in the content tree:
/sitecore/system/Settings/Rules/Common/Operators and
/sitecore/system/Settings/Rules/Common/String Operators

In the Content Editor, the creation the Segment Builder rules is the same as the creation of the
regular Sitecore rules and not covered in this document.

Creating a Visitors Query

To implement a rule class, you should know the format that your SQL statement should follow. You
should know which columns and tables to use.

For example, you can use the following SQL to search for certain visitors:

select v.VisitorId

from Visitors as v left join Visits as vi on v.VisitorId=vi.VisitorId

where vi.Country group by v.VisitorId

You should not worry about the select clause and the aliases because they are automatically

created by the VisitorQuery class. You should only specify the tables and columns.

Creating the Rule Class

The rule that you are creating checks on the string value of the country name and supports the choice
of the comparison operator. The rule class should be derived from the
Sitecore.Rules.Conditions.StringOperatorCondition<T> class, where T is the rule's

context:

public class CountryCondition<T> : StringOperatorCondition<T> where T :

VisitorRuleContext

{

}

The StringOperatorCondition class contains the GetQueryOperator method that returns the

comparison operator of type StringConditionOperator. This comparison operator should be

then converted to QueryConditionOperator.

Segment Builder Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 18

Creating the Rule Parameter

You must represent the rule parameter by a property in the rule class.

public string Value

{

 get;

 set;

}

You can specify Country as the rule parameter item and add it as a clause in the rule.

string value = this.GetValue(ruleContext);

 var clause = new ValueClause(AnalyticsTable.Visits, "Country", value, @operator);

 ruleContext.VisitorQuery.AddClause(clause,

 ruleContext.GetUniqueConditionGroupName("CountryCondition"));

Creating the Rule Logic

In the CountryCondition<T> rule class, you must override the Execute method that is based on

StringOperatorCondition<T>.

You must override the Execute method to implement the rule logic:

protected override bool Execute([NotNull] T ruleContext)

{

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

}

Putting it All Together

Now, you already know the requirements of creating a class to represent a Segment Builder rule.

This rule creates a query as an SQL statement.

The following class:

1. Converts the comparison operator of type StringConditionOperator to an operator of

type QueryConditionOperator.

2. Gets the country name and pass it as a rule parameter.

3. Creates the new query context and the appropriate clause.

4. Add the created clause to the query.

 public class CountryCondition<T> : StringOperatorCondition<T> where T :

 VisitorRuleContext

 {

 public string Value { get; set; }

 protected override bool Execute([NotNull] T ruleContext)

 {

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

 //converting string operator to query one.

 QueryConditionOperator @operator = this.GetQueryOperator(ruleContext);

 if (@operator == QueryConditionOperator.Unknown)

 {

 Log.Warn("Cannot evaluate visit condition. Condition operator is not defined.",

 this);

 return true;

 }

 //creating rule context with clause

 var innerContext = VisitorRuleContext.Create(ruleContext.Item) as T;

 Assert.IsNotNull(innerContext, "right context");

 //join the necessary tables

 innerContext.VisitorQuery.JoinTables(AnalyticsTable.Visitors, "VisitorId",

 AnalyticsTable.Visits, "VisitorId");

 //grouping data by the visitor's ID.

 innerContext.VisitorQuery.GroupData(AnalyticsTable.Visitors, "VisitorId");

 //Add the country clause.

Sitecore CMS 6.6

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 18

 this.AddClause(innerContext);

 object[] parameters;

 //Retrieving the SQL from the temporary query. This is a part of the method and

 should be the same for almost any rule. The final version of the SQL should look

 like “select VisitorId from Visitors where VisitorId IN (<select SQL from rule1>)

 AND VisitorId IN (<select SQL from rule2>) ...”. In this way, you ensure that you

 don't break the whole statement by our rule.

 string subquery = innerContext.VisitorQuery.GetVisitorIDsSql(out parameters);

 var inClause = new InClause(AnalyticsTable.Visitors, "VisitorId", subquery,

 parameters);

 ruleContext.VisitorQuery.AddClause(inClause,

 ruleContext.GetUniqueConditionGroupName("VisitCondition"));

 //return “true” at the end of the rule. This tells to the system that everything

 is fine and your rule should be considered.

 return true;

 }

 protected virtual void AddClause([NotNull] T ruleContext)

 {

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

 QueryConditionOperator @operator = this.GetQueryOperator(ruleContext);

 if (@operator == QueryConditionOperator.Unknown)

 {

 Log.Warn("Cannot evaluate country condition. Condition operator is not

 defined.", this);

 return;

 }

 string value = this.GetValue(ruleContext);

 var clause = new ValueClause(AnalyticsTable.Visits, "Country", value, @operator);

 ruleContext.VisitorQuery.AddClause(clause,

 ruleContext.GetUniqueConditionGroupName("CountryCondition"));

 }

 protected virtual QueryConditionOperator GetQueryOperator([NotNull] T ruleContext)

 {

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

 StringConditionOperator stringOprtator = this.GetOperator();

 return ruleContext.VisitorQuery.TransformOperator(stringOprtator);

 }

 protected virtual string GetValue([NotNull] T ruleContext)

 {

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

 return this.Value ?? string.Empty;

 }

}

	Introduction
	Using the Segment Builder Dialog
	Accessing the Segment Builder
	Getting the Visitor from a Rule Collection
	Sitecore.Shell.Applications.Analytics.SegmentBuilder.SegmentBuilder
	Sitecore.Analytics.Data.DataAccess.DataAdapters.DataAdapterManager

	Creating a Segment Builder Rule
	Segment Builder Rule API
	Sitecore.Analytics.Data.DataAccess.DataAdapters.VisitorQuery
	Sitecore.Analytics.Data.DataAccess.DataAdapters.Sql.SqlVisitorQuery
	Sitecore.Analytics.Data.DataAccess.DataAdapters.ClauseBase
	Sitecore.Analytics.Data.DataAccess.DataAdapters.ColumnClause
	Sitecore.Analytics.Data.DataAccess.DataAdapters.ComplexClause
	Sitecore.Analytics.Data.DataAccess.DataAdapters.HavingClause
	Sitecore.Analytics.Data.DataAccess.DataAdapters.ValueClause
	Sitecore.Analytics.Data.DataAccess.DataAdapters.InverseClause
	Sitecore.Analytics.Data.DataAccess.DataAdapters.InClause

	Creating a Segment Builder Rule as a Class
	Creating a Visitors Query
	Creating the Rule Class
	Creating the Rule Parameter
	Creating the Rule Logic
	Putting it All Together

